1. EfficientNet from youtube

img01
img02
img03
img04
img05
img06
img07
img08
img09
img10
img11
img12
img13
img14
img15
img16
img17
img18
img19
img20
img21
img22
img23
img24
img25
img26
img27
img28
img29
img30
img31
img32

2. lukemelas/EfficientNet-PyTorch

  • Github-Link : EfficientNet-PyTorch

  • EfficientNet은 a family of image classification models 이다. Based on MnasNet in term of AutoML, Compound Scaling.

  • Simply, Model 불러와 Classification 수행하기

    • import json
      from PIL import Image
      import torch
      from torchvision import transforms
      
      from efficientnet_pytorch import EfficientNet
      model = EfficientNet.from_pretrained('efficientnet-b0')
      
      # 0. Preprocess image
      tfms = transforms.Compose([transforms.Resize(224), transforms.ToTensor(),
          transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),])
      img = tfms(Image.open('img.jpg')).unsqueeze(0)
      print(img.shape) # torch.Size([1, 3, 224, 224])
      
      # 0. Load ImageNet class names
      labels_map = json.load(open('labels_map.txt'))  # 이미 EfficientNet-Pytorch/examples/simple/labels_map.txt 있다.
      labels_map = [labels_map[str(i)] for i in range(1000)]
      
      # 1. For Classify
      model.eval()
      with torch.no_grad():
          outputs = model(img)
      
      # 2. For Feature Extractor
      features = model.extract_features(img)
      print(features.shape) # torch.Size([1, 1280, 7, 7])
      
  • Pytorch Efficient-Net model Code



3. EfficientDet from youtube

img01
img02
img03
img04
img05
img06
img07
img08
img09
img10
img11
img12
img13
img14
img15
img16
img17
img18
img19
img20
img21
img22
img23
img24
img25
img26
img27
img28
img29
img30
img31
img32

4. zylo117/Yet-Another-EfficientDet-Pytorch